Sunday, July 31, 2011

ikatan logam


IKATAN LOGAM
D
I
S
U
S
U
N
OLEH:
NAMA:  RAHMADANI
NIM:  408231039
JURUSAN:  KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI MEDAN
2009
MEDAN




KATA PENGANTAR



            Puji dan syukur penulis ucapkan kepada Allah SWT karena berkat  rahmat dan hidayahnya penulis dapat menyelesaikan makalah ini.Shalawat dan salam selalu tercurah kepaada junjungan alam , teladan umat, Nabi Muhammad Saw.Dan terima kasih kepada dosen yang telah memberi bimbingan kepada penulis, sehingga penulis dapat menyelesaikan makalah ini
            Makalah yang penulis buat yaitu mengenai ikatan logam.dalam makalah ini penulis menjelaskan tentang sifat logam sehingga bagaimana logam tersebut dapat berikatan.
            Penulis berharap semoga makalah ini dapat bermanfaat bagi para pembaca.Dan penulis mohon maaf apabila ada kekurangan pada makalah ini, untuk itu penulis harapkan agar pembaca dapat memberi kritik serta saran yang membangun sehingga penulis bisa membuat makalah yang lebih baik untuk selanjutnnya.








                                                                                                         Hormat saya

                                                                                                        
                                                                                                        
                                                                                                             Penulis








BAB I
PENDAHULUAN

A. LOGAM
Dalam kimia, sebuah logam (bahasa Yunani: Metallon) adalah sebuah unsur kimia yang siap membentuk ion (kation) dan memiliki ikatan logam, dan kadangkala dikatakan bahwa ia mirip dengan kation di awan elektron. Metal adalah salah satu dari tiga kelompok unsur yang dibedakan oleh sifat ionisasi dan ikatan, bersama dengan metaloid dan nonlogam. Dalam tabel periodik, garis diagonal digambar dari boron (B) ke polonium (Po) membedakan logam dari nonlogam. Unsur dalam garis ini adalah metaloid, kadangkala disebut semi-logam; unsur di kiri bawah adalah logam; unsur ke kanan atas adalah nonlogam.

Paduan logam

Paduan logam merupakan pencampuran dari dua jenis logam atau lebih untuk mendapatkan sifat fisik, mekanik, listrik dan visual yang lebih baik. Contoh paduan logam yang populer adalah baja tahan karat yang merupakan pencampuran dari baja (Fe) dengan Krom (Cr).

Logam mulia

Secara umum logam mulia berarti logam-logam termasuk paduannya yang biasa dijadikan perhiasan, antara lain emas, perak, perunggu dan platina. Logam-logam tersebut memiliki warna yang bagus, tahan karat, lunak dan terdapat dalam jumlah yang sedikit di alam. Emas dan perak memiliki sifat penghantar listrik yang sangat baik sehingga banyak dipakai untuk melapisi konektor-konektor pada perangkat elektronik.

Logam berat

Logam berat (heavy metal) adalah logam dengan massa jenis lima atau lebih, dengan nomor atom 22 sampai dengan 92. Logam berat dianggap berbahaya bagi kesehatan bila terakumulasi secara berlebihan di dalam tubuh. Beberapa di antaranya bersifat membangkitkan kanker (karsinogen). Demikian pula dengan bahan pangan dengan kandungan logam berat tinggi dianggap tidak layak konsumsi.
B. SIFAT-SIFAT LOGAM
            Lebih dari  seratus unsur, kira-kira tiga perempatnya dikelompokkan sesbagai logam. Meskipun logam-logam ini sangat beraneka ragam sifatnya, namun terdapat beberapa sifat khas yang mempersatukan baik kimia maupun fisika yang membedakan mereka dari unsur-unsur bukan logam.
Sifat Kimia
Sifat Kimia kebanyakan logam adalah bersifat sebagai donor elektron dalam reaksi-reaksi. Ion-ion logam biasanya adalah ion positif. Ini dihubungkan dengan rendahnya energi ionisasi atom logam dan fakta bahwa biasanya terdapat kurang dari empat elektron dalam tingkatan energi terluarnya.
Sifat Fisika
Sifat fisika kebanyakan logam mencakup karakteristik berikut :
1.   Daya hantar jenis listrik yang tinggi
2.   Daya hantar jenis listrik panas yang tinggi
3.   Mengkilapnya permukaan. Permukaan semua unsur logam yang baru saja dipatahkan dan tak terkaratkan, kecuali emas dan tembaga, bewarna abu-abu, keperakan dan mengkilap.
4.   Kemampuan mengubah bentuk tanpa retak bila menderita tegangan. Logam dapat ditempah dan diulur, meskipun atom-atom mereka berikatan kuat satu sama lain   



BAB II
ISI
A. Definisi Ikatan Logam
Jika sejumlah besar atom bergabung dengan berbagi elektron masing-masing, ini disebut ikatan logam. Logam seperti besi, tembaga, seng, aluminium, dan lain-lain, yang membentuk materi mentah banyak perkakas dan instrumen yang kita lihat atau gunakan sehari-hari, mendapatkan badan yang padat dan rapat karena ikatan-ikatan logam yang terbentuk oleh atom-atomnya.
Kulit terluar unsur logam relatif kosong karena elektron valensinya berjumlah sedikit. Hal ini memungkinkan berpindahnya elektron dari satu atom ke atom yang lain. Elektron valensi mengalami penyebaran yang cukup berarti karena kemudahan untuk berpindah sangat besar. Akibat penyebaran tersebut, elektron valensi menjadi berbaur dan menyeruapai awan elektron atau lautan elektron yang membungkus ion positif di dalam atom. Sehingga struktur logam dapat dibayangkan sebagai pembungkusan ion-ion positif oleh awan atau lautan elektron.
Pembentukan ikatan logam

Pembentukan ikatan logam
Struktur yang demikian dapat digunakan untuk menjelaskan sifat-sifat khas logam seperti daya hantar listrik, daya tempa dan kuat tarik. Akibat awan elektron valensinya yang mudah mengalir maka logam juga bersifat sebagai konduktor yang baik. Penyebaran dan pergerakan elektron valensi yang cukup besar membuat logam ketika ditempa atau ditarik hanya mengalami pergeseran pada atom-atom penysunnya sedangkan ikatan yang terbentuk tetap.
Jadi ikatan logam adalah ikatan yang terbentuk akibat adanya gaya tarik-menarik yang terjadi antara muatan positif dari ion-ion logam dengan muatan negatif dari elektron-elektron yang bebas bergerak. Pada logam, elektron-elektron yang menyebabkan terjadinya ikatan di antara atom-atom logam tidak hanya menjadi milik sepasang atom saja, tetapi menjadi milik semua atom logam, sehingga elektron-elektron dapat bergerak bebas. Karena itulah maka logam-logam dapat menghantarkan arus listrik.
Ciri-ciri ikatan logam :
v  Atom-atom logam dapat diibaratkan seperti bola pingpong yang terjejal rapat 1 sama lain.
v  Atom logam mempunyai sedikit elektron valensi, sehingga sangat mudah untuk dilepaskan dan membentuk ion positif.
v  Maka dari itu kulit terluar atom logam relatif longgar (terdapat banyak tempat kosong) sehingga elektron dapat berpindah dari 1 atom ke atom lain.
v  Mobilitas elektron dalam logam sedemikian bebas, sehingga elektron valensi logam mengalami delokalisasi yaitu suatu keadaan dimana elektron valensi tersebut tidak tetap posisinya pada 1 atom, tetapi senantiasa berpindah-pindah dari 1 atom ke atom lain.
v  Elektron-elektron valensi tersebut berbaur membentuk awan elektron yang menyelimuti ion-ion positif logam.
v  Struktur logam seperti gambar di atas, dapat menjelaskan sifat-sifat khas logam yaitu :
a).  berupa zat padat pada suhu kamar, akibat adanya gaya tarik-menarik yang cukup kuat antara elektron valensi (dalam awan elektron) dengan ion positif logam.
b).  dapat ditempa (tidak rapuh), dapat dibengkokkan dan dapat direntangkan menjadi kawat. Hal ini akibat kuatnya ikatan logam sehingga atom-atom logam hanya bergeser sedangkan ikatannya tidak terputus.
c).  penghantar / konduktor listrik yang baik, akibat adanya elektron valensi yang dapat bergerak bebas dan berpindah-pindah. Hal ini terjadi karena sebenarnya aliran listrik merupakan aliran elektron.


B. Contoh dan Klasifikasinya
Ikatan logam pada natrium
Hal ini kadang-kandang dilukisakan sebagai Logam cenderung memiliki titik leleh dan titik didih yang tinggi sehingga memberikan kesan kuatnya ikatan yang terjadi antara atom-atomnya. Secara rata-rata logam seperti natrium (titik leleh 97.8°C) meleleh pada suhu yang sangat jauh lebih tinggi dibanding unsur (neon) yang mendahuluinya pada tabel periodik.
Natrium memiliki struktur elektronik 1s22s22p63s1. Ketika atom-atom natrium datang secara bersamaan, elektron pada orbital atom 2s dari satu atom natrium membagi ruang dengan elektron yang bersesuaian pada atom tetangganya untuk membentuk sebuah orbital molekul ? kebanyakan sama atau serupa dengan cara pembentukan ikatan kovalen.
Perbedaannya, bagaimanapun, tiap atom natrium tersentuh oleh delapan atom natrium yang lainnya ? dan terjadi pembagian (sharing) antara atom tengah dan orbital 3s di semua delapan atom yang lain. Dan tiap atom yang delapan ini disentuh oleh delapan atom natrium, yang kesemuanya disentuh oleh delapan atom natrium, terus dan terus sampai kamu memperoleh seluruh atom dalam bongkahan natrium.
Semua orbital 3s dalam semua atom saling tumpang tindih untuk memberikan orbital molekul dalam jumlah yang sangat banyak yang memeperluas keseluruhan tiap bagian logam. Terdapat jumlah orbital molekul yang sangat banyak, tentunya, karena tiap orbital hanya dapat menarik dua elektron.
Elektron dapat bergerak dengan leluasa diantara orbital-orbital molekul tersebut, dan karena itu tiap elektron manjdi terlepas dari atom induknya. Elektron tersebut disebut terdelokalisasi. Logam terikat bersamaan melalui kekuatan dayatarik yang kuat antara inti positif dengan elektron yang terdelokalisasi.

"susunan inti positif di lautan elektron".
Setiap pusat positif pada diagram menggambarkan sisa atom yang terlepas dari elektron terluar, tetapi elektron tersebut tidak menghilang – ini mungkin tidak termasuk tambahan pada atom yang istimewa, tetapi pusat positif tetap berada dalam struktur. Karena itu logam natrium ditulis dengan Na – bukan Na+.
Ikatan logam pada Magnesium
Magnesium memiliki struktur elektronik terluar 3s2. Diantara elektro-elektronnya terjadi delokalisasi, karena itu "lautan" yang ada memiliki kerapatan dua kali lipat daripada yang terdapat pada natrium. Sisa "ion" juga memiliki muatan dua kali lipat (jika kamu menggunakan tinjauan ikatan logam) dan tentunya akan terjadi dayatarik yang lebih banyak antara "ion" dan "lautan".
Lebih realistis, tiap atom magnesium memiliki satu proton lebih banyak pada intinya dibandingkan yang dimiliki oleh natrium, dan karena itu tidak hanya akan terdapat jumlah elektron yang terdelokalisasi tetapi juga akan terjadi lebih banyak dayatarik yang terjadi diantara mereka.
Atom-atom magnesium memiliki jari-jari yang sedikit lebih kecil dibandingkan atom-atom natrium dan karena itu elektron yang terdelokalisasi lebih dekat ke inti. Tiap atom magnesium juga memiliki 12 atom terdekat dibandingkan delapan yang dimiliki natrium. Faktor-faktor inilah yang meningkatkan kekuatan ikatan secara lebih lanjut.
Ikatan logam pada unsur-unsur transisi
Logam transisi cenderung memiliki titik leleh dan titik didih yang tinggi. Alasannya adalah logam transisi dapat melibatkan elektron 3d yang ada dalam kondisi delokalisasi seperti elektron pada 4s. Lebih banyak elektron yang dapat dilibatkan,maka  kecenderungan dayatarik akan lebih kuat
Ikatan logam pada leburan logam
Pada leburan logam, ikatan logam tetap ada, meskipun susunan strukturnya telah rusak. Ikatan logam tidak sepernuhnya putus sampai logam mendidih. Hal ini berarti bahwa titik didih merupakan penunjuk kekuatan ikatan logam dibandingkan dengan titik leleh. Pada saat meleleh, ikatan menjadi longgar tetapi tidak putus
Menurut Teori Awan Elektron yang dijelaskan oleh Drude dan Lorentz pada awal ke 20 , di dalam krisatal setiap logam, setiap atom melepaskan electron valensinya sehingga terbentuk awan electron dan kation, yaitu kumpulan inti atom yang bermuatan positif dan tersusun rapat dalam awan elektron tersebut.Elektron valensi tidak terikat pada salah satu ion logam atau pasangan ion logam melainkan terdelokalisasi terhadap semua ion logam. Oleh karena itu, electron valensi tersebut bebas bergerak ke seluruh bagian Kristal logam, sama halnya dengan molekul – molekul gas yang dapat bergerak bebas dalam ruangan tertentu.

Jadi, menurut teori awan elektron tersebut, kristal logam terdiri atas kumpulan ion logam yang bermuatan positif dalam lautan elektron yang mudah bergerak. Ikatan logam terdapat antara ion logam positif dan elektron yang mudah bergerak tersebut.


http://www.ikatankimia.co.cc/images/stories/ikatanlogam/ikatanlogam1.jpg 





Ikatan dalam kisi Kristal logam tidak kaku seperti Kristal senyawa kovalen, sebab dalam kisi Kristal logam tidak terdapat ikatan terdelokalisasi. Karena daya tarik setiap ion logam  bermuatan positif terhadap electron valensi sama besarnya, maka suatu lapisan ion logam bermuatan positif dalam kisi Kristal mudah bergeser.Jadi sebuah ikatan logam putus, maka akan segera terbentuk ikatan logam yang baru. Oleh karena itu, logam dapat ditempa menjadi lempeng yang sangat tipis, dapat ditarik menjadi kawat yang halus atau dibengkokkan.

Logam cenderung memiliki titik leleh dan titik didih yang tinggi sehingga memberikan kesan kuatnya ikatan yang terjadi antara atom-atomnya. Secara rata-rata logam  meleleh pada suhu yang sangat jauh lebih tinggi dibanding unsure  yang mendahuluinya pada tabel periodik. Ikatan logam tidak sepenuhnya putus sampai logam mendidih. Hal ini berarti bahwa titik didih merupakan penunjuk kekuatan ikatan logam dibandingkan dengan titik leleh. Pada saat meleleh, ikatan menjadi longgar tetapi tidak putus
Sebagai contoh ikatan logam pada Natrium (titik leleh 97,80C), meleleh pada suhu yang jauh lebih tinggi dibandingkan neon. Natrium memiliki konfigurasi electron 1s22s22p63s1. Ketika atom-atom natrium datang secara bersamaan, elektron pada orbital atom 2s dari satu atom natrium membagi ruang dengan elektron yang bersesuaian pada atom tetangganya untuk membentuk sebuah orbital molekul. Hal tersebut kebanyakan sama atau serupa dengan cara pembentukan ikatan kovalen.
Orbital s dalam semua atom logam,  saling tumpang tindih untuk memberikan orbital molekul dalam jumlah yang sangat banyak yang memperluas keseluruhan tiap bagian logam. Terdapat jumlah orbital molekul yang sangat banyak, tentunya, karena tiap orbital hanya dapat menarik dua elektron.

C. Fakta Yang Mendukung Adanya Ikatan Logam


Drude dan Lorentz mengemukakan model, bahwa logam sebagai suatu kristal terdiri dari ion-ion positif logam dalam bentuk bola-bola keras dan sejumlah elektron yang bergerak bebas dalam ruang antara. Elektron-elektron valensi logam tidak terikat erat (karena energi ionisasinya rendah), sehingga relatif bebas bergerak. Hal ini dapat dimengerti mengapa logam bersifat sebagai penghantar panas dan listrik yang baik, dan juga mengkilat. Gambar  berikut mengilustrasikan suatu model logam dengan elektron-elektron membentuk suatu “lautan” muatan negatif.

       struktur logam, lautan elektron
Struktur Logam menurut Teori "Lautan Elektron"

Model lautan elektron ini sesuai dengan sifat-sifat logam, seperti: dapat ditempa menjadi lempengan tipis, ulet karena dapat direntang menjadi kawat, memiliki titik leleh dan kerapatan yang tinggi. Logam dapat dimampatkan dan direntangkan tanpa patah, karena atom-atom dalam struktur kristal harus berkedudukan sedemikian rupa sehingga atom-atom yang bergeser akan tetap pada kedudukan yang sama. Hal ini disebabkan mobilitas lautan elektron di antara ion-ion positif meru-pakan penyangga.

Keadaan yang demikian ini berbeda dengan kristal ionik. Dalam kristal ionik, misalnya NaCl, gaya pengikatnya adalah gaya tarik menarik antar ion-ion yang muatannya berlawanan dengan elektron valensi yang menempati kedudukan tertentu di sekitar inti atom. Bila kristal ionik ini ditekan, maka akan terjadi keretakan atau pecah. Hal ini disebabkan adanya pergeseran ion positif dan negatif sedemikian rupa sehingga ion positif berdekatan dengan ion positif dan ion negatif dengan ion negatif, keadaan yang demikian ini mengakibatkan terjadi tolak-menolak sehingga kristal ionik. menjadi retak
kristal ionik, tekanan, ikatan
Adanya Tekanan terhadap kristal ionic
              



D. Pengaruh Ikatan Logam Terhadap Sifat Logam
Logam cenderung memiliki titik leleh dan titik didih yang tinggi sehingga memberikan kesan kuatnya ikatan yang terjadi antara atom-atomnya. Secara rata-rata logam  meleleh pada suhu yang sangat jauh lebih tinggi dibanding unsur  yang mendahuluinya pada tabel periodik. Ikatan logam tidak sepenuhnya putus sampai logam mendidih. Hal ini berarti bahwa titik didih merupakan penunjuk kekuatan ikatan logam dibandingkan dengan titik leleh. Pada saat meleleh, ikatan menjadi longgar tetapi tidak putus

E. Faktor Yang Mempengaruhi Kekuatan Ikatan Logam       
Sifat fisik logam
Titik leleh dan titik didih
Logam-logam cenderung memiliki titik leleh dan titik didih yang tinggi karena kekuatan ikatan logam. Kekuatan ikatan berbeda antara logam yang satu dengan logam yang lain tergantung pada jumlah elektron yang terdelokalisasi pada lautan elektron, dan pada susunan atom-atomnya.
Logam-logam golongan 1 seperti natrium dan kalium memiliki titik leleh dan titik didih yang relatif rendah karena tiap atomnya hanya memiliki satu elektron untuk dikontribusikan pada ikatan – tetapi ada hal lain yang menyababkan hal ini terjadi:
·         Unsur-unsur golongan 1 juga tersusun dengan tidak efektif (terkoordinasi 8), karena itu tidak terbentuk ikatan yang banyak seperti kebanyakan logam.
·         Unsur-unsur golongan 1 memiliki ukuran atom yang rekatif besar (berarti bahwa inti jauh dari elektron yang terdelokalisasi) yang juga menyebabkan lemahnya ikatan.
Daya hantar listrik
Logam menghantarkan listrik. Elektron yang terdelokalisasi bebas bergerak di seluruh bagian struktur tiga dimensi. Elektron-elektron tersebut dapat melintasi batas butiran kristal. Meskipun susunan logam dapat terganggu pada batas butiran kristal, selama atom saling bersentuhan satu sama lain, ikatan logam masih tetap ada.
Cairan logam juga menghantarkan arus listrik, hal ini menunjukkan bahwa meskipun atom logam bebas bergerak, elektron yang terdelokalisasi masih memiliki daya yang tersisa sampai logam mendidih.
Daya hantar panas
Logam adalah konduktor panas yang baik. Energi panas diteruskan oleh elektron sebagai akibat dari penambahan energi kinetik (hal ini memnyebabkan elektron bergerak lebih cepat). Energi panas ditransferkan melintasi logam yang diam melalui elektron yang bergerak.
Kekuatan dan kemampuan kerja
Sifat dapat ditempa dan sifat dapat diregang
Logam digambarkan sebagai sesuatu yang dapat ditempa (dapat dipipihkan menjadi bentuk lembaran) dan dapat diregang (dapat ditarik menjadi kawat). Hal ini karena kemampuan atom-atom logam untuk menggelimpang antara atom yang satu dengan atom yang lain menjadi posisi yang baru tanpa memutuskan ikatan logam.
Jika tekanan yang kecil dikenakan pada logam, lapisan atom akan mulai menggelimpang satu sama lain. Jika tekanan tersebut dilepaskan lagi, atom-atom tersebut akan kembali pada posisi asalnya. Pada kondisi seperti itu, logam dikatakan menjadi elastis.
Jika tekanan yang lebih besar dikenakan pada logam, atom-atom akan menggelimpang satu sama lain sampai pada posisi yang baru, dan logam berubah secara permanen.
Kekerasan logam
Penggelimpangan lapisan atom antara yang satu dengan yang lain ini dihalangi oleh batas butiran karena baris atom tidak tersusun sebagai mana mestinya. Hal ini mengakibatkan semakin banyak batas butiran (butiran-butiran kristal lebih kecil), menyebabkan logam lebih keras.
Untuk mengimbangi hal ini, karena batas butiran merupakan suatu daerah dimana atom-atom tidak berkaitan dengan baik satu sama lain, logam cenderung retak pada batas butiran. Kenaikan jumlah batas butiran tidak hanya membuat logam menjadi semakin kuat, tetapi juga membuat logam menjadi rapuh.
Pengontrolan ukuran butiran kristal
Jika kamu memiliki bagian logam yang murni, kamu dapat mengontrol ukuran butiran kristal melalui perlakuan panas atau melalui pengerjaan logam.
Pemanasan logam cenderung untuk mengocok atom-atom logam menjadi susunan yang lebih rapi – penurunan jumlah batas butiran, dan juga membuat logam lebih lunak. Pembantingan logam ketika logam tersebut mendingin cenderung untuk memhasilkan butirn yang kecil. Pendinginan membuat logam menjadi keras. Untuk memperbaiki kinerja ini, kamu dapat memanaskannya lagi.
Kamu juga dapat memutuskan susunan yang atom teratur melalui penyisipan atom yang memiliki ukuran sedikit berbeda pada struktur logam. Alloy seperti kuningan (campuran tembaga dan seng) lebih keras dibandingkan logam asalnya karena ketidakteraturan struktur membantu pencegahan barisan atom tergelincir satu sama lain.
















DAFTAR PUSTAKA


                                          

Keenan,dkk.1984.Kimia Untuk Universitas.Jakarta: Erlangga


http://purtadi.edublogs.org/files/2009/04/kel-04-bagaimana-munculnya-konsep-ikatan- logam.doc be






www.q-mia.110mb.com/struktur_logam.html


2 comments:

  1. thx for ur comment
    maaf ya tridawati, file aslinya saya lupa letakkan dimana, karena laptop saya sudah beberapa x di install. jadi kl kamu mw, copy paste az
    tp jgn lupa cantumkan alamat blog saya ya :)

    ReplyDelete